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Abstract 

We discuss the relationship between the physical evolution of discrete extragalactic 
sources, the statistical evolution of the observed population of sources, and the cosmolog- 
ical model. Three simple forms of statistical evolution - pure luminosity evolution (PLE), 
pure density evolution (PDE), and generalized luniinosity evolution (GLE) - are considered 
in detail together with what these forms imply about the physical evolution of individual 
sources. Two methods are used to analyse the statistical evolution of the observed dis- 
tribution of QSO’s from combined flux limited samples. It is shown that both PLE and 
PDE are inconsistent with the data over the redshift range 0 < z < 2.2, and that a more 
complicated form of evolution such as GLE is required, indepedent of the cosmological 
model. This result is important for physical models of AGN, and in particular, for the 
accretion disk model which recent results show may be inconsistent with PLE. 

I. In t r o d uc t io 11 

Since the recognition of QSO’s as a separate class of extragalactic objects, great 

emphasis has been placed on statistical analysis of the QSO population. It has been hoped 

that information contained in this population in the form of its distribution and general 

evolution would reveal the nature of the QSO energy source and help to constrain the values 

of some of the cosmological parameters. Much progress has been made in determining the 

general properties of the QSO population in terms of, for example, spectral shape, line 

widths, variability, etc., and physical models have been constructed which explain many 

of these observed features. 

The most widely accepted model today - what has been referred to recently as the 
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standard model - proposes mass accretion onto a massive black hole as the primary QSO 

energy source (Sheilds, 1977; Malkaa, 1983). To conserve angular momentum, the infalling 

matter is expected to take the form of an accretion disk, and radiation from this disk is 

thought to be the primary source of QSO luminosity. Although the disk radiation may be 

reprocessed in a variety of ways, the total QSO luminosity is espected to scale with the 

energy production of the accretion disk. This model has gone a long way toward explaining 

features such as those described above, but much refinement of this model has yet to be 

done to determine whether ultimately it can explain QSO properties in detail. 

An important test for any physical model concerns the formation and temporal evolu- 

tion of the individual objects, which we call the physical evolution. Two different physical 

models may explain spectral features of the QSO population at a given era, for example, 

but each may produce different present day populations. Long lived QSO’s all born at 

an early era and all evolving in a similar mcanner, the so called pure luminosity evolution 

model (PLE), may produce far different population evolution than would QSO’s with rel- 

atively constant properties undergoing continuous formation and death, the pure density 

evolution model (PDE). A proper account of the constraints imposed by the observed 

statistical evolution of the QSO population should be made for any proposed physical 

evolution model of QSO’s. 

Early analyses of radio selected quasars by Schmidt (1968) and Lynds and Wills 

(1972) demonstrated dramatic evolution in the QSO population which appeared to be 

independent of source luminosity, and a PDE model was tentatively adopted. Longair and 

Scheuer (1970) showed that PDE and PLE were indistinguishable in the absence of features 

in the luminosity function and Lynds and Petrosian (1072) gave a more detailed analysis 

of the interplay between density and luminosity evolution. Petrosian (1973) analysed both 

radio and optically selected ()SO’S assuming PDE and found the evolution to depend 

upon the selection criterion. He proposed a two class model with radio loud soiirces 

undergoing strong density evolution and radio quiet sources showing little or no density 
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evolution. Schmidt and Green (1978), in a preliminary analysis of the Palomar Bright 

Quasar Survey (BQS), showed the evolution to be consistent with PDE. Giaconni et al. 

(1979) and Tananbaum et al. (1979) showed that PDE would violate the limits on the 

X-ray background, and Marshall et al. (1983) concluded that PLE is consistent with both 

the X-ray background limits and the observed number counts in the -AB and BF samples. 

Schmidt and Green (1983), in a thorough analysis of the BQS and five other optically 

selected samples, showed luminosity dependence to esist in QSO evolution and proposed 

the luminosity dependent density evolution model which is a generalization of the two class 

model of Petrosian. Marshall et al. (1984) and hlarshall (1985) found PLE with a steep 

power law luminosity function to be consistent with the available optical data, but once 

again, due to the featureless shape of the luminosity function, could not rule out density 

evolution. Recent surveys by Boyle (1986) and Iioo and Iiron (1988) show a break in the 

power law luminosity function which has been fit by Marshall (19S8) to a PLE model. Iioo 

and Kron fit a luminosity dependent density evolution model similar to that of Schmidt 

and Green to their data. Boyle et al. (1988) use a PLE model, but cannot rule out density 

evolution at the low luminosity end of the luminosity function. In the present work, we 

find both PDE and PLE to be inconsistent with the available QSO data. 

Until recently, little has been done to compare the physical evolutions with the statis- 

tical evolutions. Cavaliere et al. (1983a,b) and Cavaliere and Padovani (19S8) discuss the 

relationship between physical parameters, such as the Eddington ratio, L/M, and the sta- 

tistical evolution under the gravitational accretion hypothesis. Such a comparison between 

physical and statistical evolutions requires knowledge of the characteristic evolution of in- 

dividual QSO's as a function of various population parameters. This physical evolution is 

not directly observable, hut must be inferred from the evolution of the ensemble as a whole. 

Because of the observational selection effects inherent in any QSO survey, the ensemble 

evolution is itself not a well determined quantity. -1s described above, the availabilit,y of 

deeper QSO samples detecting intrinsically fainter olijects. has helped to determine the 
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ensemble evolution (Boyle et a]. ,  1987; h4arshal1, 19SS). But, as we shall show below, 

characteristic physical evolution is not determined uniquely by the ensemble evolution - a 

proposed form of evolution may be shown only to be consistent with the observed ensemble 

averages as well as various other constraints such as X-ray background and present day 

density of galaxies which may be presumed to have once been active QSO’s. 

The problem of determining an appropriate law for physical evolution is further com- 

plicated by the ambiguity in the choice of cosmological model. -4 knowledge of the cosmo- 

logical parameters is necessary to convert observed fluxes and distributions into absolute 

luminosities and object densities. -4s it has been stressed (e.g., Caditz and Petrosian 

(19SS)) because of this ambiguity and other uncertainties such as intergalactic absorp- 

tion, it is uncertain how accurately physical evolution can be determined from the QSO 

population. 

The main purpose of this work is to describe the relationship between evolution of the 

QSO luminosity function, the physical evolution of individual objects, and the cosmological 

model, and to test popularly accepted views of physical and statistical evolution. In Section 

I1 we describe the mathematical framework relating the physical and statistical evolution 

of a population of extragalactic objects. In Section I11 we apply various statistical tests to 

determine the evolution of the luminosity function and to see which evolutionary models 

are consistent with the presently available QSO data. We determine that PLE, as proposed 

by the above mentioned authors, is not an adequate esplanation of the evolution seen in the 

QSO population and the idea that QSO’s are long lived phenomena may be questionable. 

Section IV gives a brief summary and discussion. . 
11. The Relationship Between Physical and Statistical Evolution 

Two l)casic properties of any extragalactic source which may be related to observable 

quantities are its absolute luminosity, L. and its age, t ,  = t - t , ,  where t ,  is the object’s 

time of formation, time of brightening, or time a t  some other standard phase of evolution 
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which may be applied to all objects. These quantities are related to the observed flus, I, 

and redshift, z, via: 

L = 4xd;I 

where dl = dl(z,C&) is the luminosity distance, and H = H(z,Q;) is the Hubble con- 

stant at redshift z (e.g., Weinberg, 1972). Here a; stand for the cosmological parameters 

(0, Q o ,  11, ... ). 
If the physical evolution of these objects. which we denote as L G a L / a t ,  is a function 

only of luminosity and time, then the objects must obey the continuity equation, 

d D 
at DL 
-Q(L, t )  + - [LWL,  t ) ]  = S(L, t )  

where Q(L, t )  is the luminosity function, or comoving density of objects at (L, t ) ,  and S(L,t) 

is the source function which describes the difference between the instantaneous birth and 

death rates. L and S together describe the physical evolution of the sample. The formal 

solution to equation (3) is given by, 

where we have defined the quantities: 

aL 
a ( L , t )  = - 

DL 

and 

( 5 )  

T( t )  = c1 (L(t ' ) ,  t') clt'. (6) it 
Here L,(L, t )  = L -Jtt L( t ' )  tlt'. and 'IJ, is the initial soiirce tlistribution at ti. In general, we 

can expect the source density, p ( t )  = J 9 ( L ,  t )  clL and the shape of the luminosity function 

to vary with time. 

" 
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Notice that the L and S can not be determined uniquely from the function Q, even if 

9 is known throughout the entire L-t parameter space. Therefore, it is necessary to make 

further assumptions about the physical evolution. In the following, we assume various 

functional forms for L and S to obta.in solutions to equation (3) which exemplify proposed 

forms of QSO statistical evolution. 

a)  Pure Luminosity Evolution 

If we assume that the source formation occurred in a short burst at some initial time 

ti (i.e., S(L, t )  = d(L)S(t - t ; )  ) then the form of the luminosity function is completely 

specified by the conditions at ti and the physical evolution of the objects which must 

have ages comparable to the cosmological age. The solution (4) in this case simplifies to 

!P(L,t) = $(Li(L,t))e-'(L.f). If we further assume t,hat all objects brighten or dim in the 

same manner, so that the physical evolution is described by 

L(t) = L d t  - ti), S(L,t) = d(L)S(t - t i ) ,  (7) 

where Li is the luminosity at formation, and g ( 0 )  = 1, then from equations (5) and (6) we 

find cy = g / g  and T = ln(g(t - t i ) )  so that 

This form of luminosity function is easily recognized as PLE because it maintains its shape 

on a log( S )  - log( L) plot and undergoes a simple translation in luminosity, determined by 

the function g ( t  - t i ) .  Evidence of this kind of behavior for the luminosity function would 

suggest the physical evolution of equation (7) .  

Equation (7) ,  however is not the only liind of physical evolution which can give rise 

t o  PLE. L4n estreme opposite is a model of physical woliition with continuous creation 

of short lived (compared to cosmological time) sources; L, x 6( t  - t Z ) .  In this case. the 

evolution of the luminosity is unimportant and we can set L = 0 in equation (3) .  However. 
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we can still conserve the total number of sources and obta.in equation (S) if the physical 

evolution functions have the form 

with $(x) = 2-l JZZi C ( x ' )  dx'. Both models described by equations (7) and (9) are ex- 

treme and require special conditions. Models with intermediate conditions between these 

two extremes can also give rise to solution (S) and PLE if the function g ( t )  appearing 

+ in equations (7) and (9) are identical. This is unlikely because g ( t )  in (7) describes the 

evolution of the luminosity of sources which is most likely determined by the source envi- 

ronment, while g ( t )  in equation (9) describes the rate of formation of the sources which 

may be coupled to global conditions. We may therefore conclude that in general PLE 

requires very special conditions. 

b) Pure Density Evolution 

If we assume that objects may form (and die) at  any era, and that they undergo little 

or no evolution in luminosity, then we may set L = 0 in equation (3) and we find a solution 

of the form 

*(LA) = S(L , t ' )d t '  (10) 6' 
If we further assume that the source function is separable, (i.e., S(L,t) = y(t)d(L) ), then 

we obtain the solution 

Q(L. t )  = /J(  t ) 4 (  L )  

117 here 

p ( t )  = 1' q ( t )  d t .  (E) 

Equation (11) is tlie so called p w e  density cvdution (PDE) form of the luminosity function. 

Cider PDE, tjhe luminosity function maintains its shape, hut its overall normaliznt,ion may 

vary with time, cither increasing or decreasing depending on tlic sign of S. =In observed 



luminosity function of the form of equation (11) suggests the physical evolution described 

above. Note, however, that for a constant or increasing density, one cannot differentiate 

between short and long lived sources. 

PDE cannot be obtained from a S - function source term (escept in the trivial case 

of zero evolution) because, in that case, the total number of sources must be conserved. 

Over a limited range in luminosity, however, some general forms of physical evolution could 

produce a luminosity function of equation (11). 

c )  Generalized Lumiiiosi t y  Evolution 

-4 third simplified luminosity function of interest is one with invariant shape, 

where the functions p ( t )  and g ( t )  describe the density and luminosity evolution, respec- 

tively. This generalized luminosity evolution (GLE) lends itself to easy interpretation in 

the number-flux moment test to be discussed below. The physical evolutions which can 

give rise to such a statistical evolution are almost as restrictive as those discussed in the 

previous two cases. For example, if there exists a universal evolution of the luminosity of 

objects, independent of their initial luminosity and epoch of formation, L = L,g(t), and if 

the rate of formation is such that the luminosity distribution of newly created objects is 

the same as those which were created earlier and had evolved according to the universal 

law, then S(L, t )  = $(L/g(t))71(t) ,  and one obtains a liiniinosity function of invariant shape 

with p ( t )  = Jo g(t')q(t')dt'. Note that for 7l ( t )  (x S ( t )  this reduces to the PLE case, and 

for g ( t )  = constant it reduces to PDE. 

t 

Most of the assumptions involved in the casos described above are very restrictive and 

assume that the physical evolutions are determined by global conditions and not necessarily 

I)? the immediate environment of the object. In a realistic situation, both glohal and local 

conditions will be important and the physical cvolutions will lie more complicated giving 
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rise to the general luminosity function described by equation (4). These models are, 

however, commonly assumed, and we therefore test them for consistency with available 

QSO data. 

111. Aiialysis of the QSO Data 

The above discussion is further complicated by the fact that the luminosity function, 

@(L, t ) ,  is not directly observable, but must be estimated from the observed data which 

covers an incomplete portion of the luminosity-time luminosity-redshift plane, even if the 

cosmological model is known. In the following analyses, we use redshift, 2, in place of 

cosmic time, t ,  used above. The relationship between z and t is given by equation ( 2 ) .  

and the above equations carry over in a straight forward manner. For PDE the luminosity 

function, Q, is presumed to be a separable function of L and 2 and the behavior of high 

redshift, low luminosity objects (not seen in a flus limited survey) may be inferred from 

the luminosity function at low redshifts (where most of the luminosity function is seen). 

Various techniques have been developed (Schmidt, 1968; Lynden-Bell, 1971; Jackson, 1974: 

Felten, 1976; Turner, 1979; Petrosian, 1986) for estimating the PDE luminosity function 

based on the observed portion of the L - 2 plane. Constructing a PLE or GLE luminosity 

function from incomplete data, on the other hand, is more complicated. The luminosity 

function at high redshifts cannot be inferred from that at low redshifts without linowledge 

of the evolution, g ( z ) .  In practice, a functional form for g ( z )  is chosen, and it is assumed 

that in terms of the new parameter, L' = L/g( z ) ,  and 2 the luminosity function is separable 

and the techniques described above for PDE may be employed. The luminosity function 

determined in this manner is then chec1;ecl for consistency with the requirement for PLE 

or GLE - i.e., coiistsnt logarithmic shape of tlic luminosity function - which, if consistent, 

indicates a correr-t vhoice of g( 2 ) .  

The shape of the luminosity function a t  a givcn rcdshift (or time) is not greatly af- 

fected by uncertainty in the cosmological model. For stnnclarcl models this uncertainty is 



usually within the random errors. However. we emphasize aga.in that the evolutions of the 

luminosity function, described by g ( z )  and p ( z ) ,  will depend on the choice of cosmolog- 

ical parameters, although acceptance or rejection of a PLE model will not. (Caditz and 

Petrosian, 1988). 

a)  Results from Pre\.ious Anal.vses 

Previous analyses of QSO data derived from flus limited samples, have shown that 

the luminosity function at 2500 ,&is of a power law form, Q(L . t )  c( L-’ with 8 M 3.5 

(Marshall 1985) lacliing any significant features. It is therefore impossible to distinguish 

between PDE and PLE evolutionary forms. -4 horizontal shift in luminosity (PLE), for 

example, is completely equivalent to a vertical shift in density (PDE). Constraints such as 

overproduction of the X-ray baclcground (Giaconni et al., 1979; Tananbaum et al., 1979; 

Morisawa and Takahara, 1988) or violation of the limits set by optical number counts 

(Marshall et a]., 1983) have been used to rule out PDE for such samples. However, various 

other forms of evolution such as PLE or GLE have not been shown to be uniquely correct. 

Two more recent surveys, (Boyle, 1986; Koo and Kron, 1988), have acheived fainter limiting 

lilue magnitudes of B = 20.9 and B = 22.5 respectively. These deeper surveys allow 

examination of the L - z plane to lower luminosities, even at higher redshifts. These 

authors have found a break in the power law index of the luminosity function which can be 

used to determine the evolutionary form. Boyle et al .  (1988) and Marshall (1988) claim to 

obtain self consistent PLE solutions with g(  z J *x ( 1 + ~ ) ~  where k x 3.2 (R = 1, A = 0). (We 

note that this form of evolution evolves the lxeali essentially parallel to the flus limit over 

the redshift range of the surveys, though i t  is liighly unlikely that the break is the result 

of incompleteness. ) XlIarsliall (1987) has sliown that this evolutionary law, extrapolated to 

the present era, ivould give a QSO liiminosity fiinction consistent with that observed for 

Seyfert galaxies (see also Cavaliere et a]., 19S5: Weedman, 198Ga). Under the PLE mo(le1. 

then, Seyferts may lie considered to lie the present clay remnants of once luminous QSO’s. 



It is tempting, therefore, to interpret this form of evolution of the luminosity function as 

the result of the common physical evolution of individual objects, all born at a given era, 

t i ,  and all undergoing evolution according to a common law, L = Lo( l  + z ) ~ . ~ .  A smooth 

transition would then exist between lxight, high redshift QSO’s and low redshift Seyfert 

galaxies. 

b)  A-onpa ram et ric -411 alysis 

To test these results we use the combined QSO data from various surveys described 

in Table 1. These are flux limited optical surveys from which we obtain luminosities at a 

standard wavelength of 2500a assuming a spectral index of a = -1 as is common practice 

(Marshall et a] . ,  1984: Weedman. 19S6b) and a Fricdman model (R = 1, A = 0). We note, 

however. that in the accretion disk model the spectrum may be more complicated and the 

above k-correction may not be correct. We shall address this point in a future publication. 

Our general analysis below tests the consistency of the QSO data with thc more 

general GLE model which, as mentioned above, contains both PLE and PDE. -4 rejection 

of GLE therefore, rules out both PLE and PDE. According to GLE, the luminosity function 

evolves in density by the function p ( z ) ,  and in luminosity according to a particular law, 

L = Log(z), yet it maintains its shape over the redshift range of interest. When the 

luminosity function o( L’) is calculated using the transformation L‘ = L/g(z), it should be 

independent of redshift. 2. Likewise. the density function, p( z ) ,  should be independent of 

L’. Using a nonparametric procedure (Petrosian 19%) appropriately modified for combined 

samples (see -Appendix A ) ,  we have calculated the luminosity function for the data given 

in Table 1. TVe have considered the evolutionary laws g ( z )  = constant, corresponding to 

PDE. g( 2 )  x (1  + 2 ) 3 . 2  ( Q  = 1. ,I = O ) ,  as given by hlarshall (1988), and g ( z )  cx exp(tl/r) 

where r = . i 3  Gyr and t l  = to  - t ( 2 )  is the cosmological l(>(>libacli time as discussed lwlo~v. 

In this section wve asslime a standard Fricclnian cosnlology with density parameter Q = 1 

and zero cosmological constant. 
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i) Test of PDE: y( z )  = constant. iYonpa.rametric luminosity functions assuming no 

luminosity evolution are plotted in Figure 1. The characteristic power law form is seen 

at high luminosities with a break and a flatter slope at lower luminosities. The position 

of the break clearly evolves with redshift, being lxighter in the high redshift, bins. The 

tn7o lowest redshift luminosity functions do not appear to have the same double power law 

shape. Figure l a  shows a clear evolution of the lxeak luminosity with redshift, ruling out 

PDE directly from the observed data, and without recourse to the X-ray 1)ackground or 

number count arguments described above. 

The nonparametric cumulative density function, a( V) = p( 1’) dV, is given by curve 

a in Figure 2. In tlie absense of evolution, a ( I - )  should increase linearly with volume 

(dashed lines in Figure 2), but the calculated a ( V )  shows a dramatic increase in the 

comoving density of objects. This could lie mainly the result of a general brightening 

of the characteristic or average luminosity with redshift, or a decrease in tlie number of 

objects with time (S(L,t)  < 0). 

ii) Test of PLE: y(z) = (1 +zj3 . ’ .  Figure 113 shows the luminosity functions assuming 

The luminosity evolution of tlie form y(z) = (1 + z ) 3 . 2  as given by hlarshall (19SS). 

requirement of constant shape is fairly well met for redshifts, z > 0.6, but it fails at lower 

redshifts where the shape changes into a single power law form. The Kolmogorov-Smirnov 

Test applied to the lowest redshift bin in Figure 111 rejects the double power law as given by 

llarshall and Boyle et al.  (19%) whereas il single power law is not rejected. The departure 

from tlie double power law shape for low redshifts indicates either that PLE is not correct 

over the entire range of redshift, or that tlie cvolutionary law (or cosmology) is not correct. 

-4 more strongly evolving characteristic luminosity, for example, would put the break in 

slope lxyontl the observable limit in the low rcdshift h i s .  In this case, however, it may 

lie liard to cvolvc t l i ~  high rcdshift QSO liiiiiinosity fimction into the low redshift Scyfcrt 

luminosity function a s  suggested by Marshall (19Si’) and Weetlmnn (1986a). 

The nonparametric cumulative dcnsity fitiiction (curve h in Figitrc 2 )  increases with 
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volume somewhat faster than linear as expected for constant comoving density. This could 

be either the result of a true increase in comoving density or luminosity evolution which 

is stronger, especially at lower redshifts, than g ( z )  = (1 + z ) ~ . *  as assumed. 

iii) Test of PLE: g ( z )  = exp(tr/.73). In order to test the latter possibility mentioned 

above, we have repeated the above analysis assuming the exponential form for g ( z ) .  This 

form of evolution is also commonly used and, because it increases more rapidly with z it 

may give a better fit to the QSO data. We will show below that this is indeed the case. 

Cumulative luminosity and density functions, assuming exponential evolution in luminosity 

are plotted in Figures IC and curve c in Figure 2. In this case the break in the luminosity 

function has evolved out of the observable region of the L - z plane at redshifts z < 0.6, 

although the slope of the luminosity function is flattening at low z inconsistent with PLE or 

GLE. Figure 2 (curve c )  shows a higher comoving density of objects at redshifts z < 0.6 

(V < 8 x 10gh3 Mpc3) than expected for PLE (o(V) oc V),  indicating either a true 

decrease in the number of objects with redshift or a luminosity evolution weaker than the 

assumed form. 

iv) Test of GLE. The above result shows that GLE provides an approximate descrip- 

tion of the data. However, it should be noted that if GLE is indeed a true description, then 

any departure of the luminosity function from a constant shape when evolved according 

to a particular physical evolutionary law could be attributed to an incorrect choice of evo- 

lutionary law or cosmological model. Conversely, if GLE is not the true form of evolution, 

then the luminosity function may be made to resemble GLE over a limited range of the 

L - z plane with the appropriate (incorrect) choice of physical evolution or cosmology. The 

evolutionary laws considered above give results consistent with GLE over only a limited 

range of redshift and luminosity and it is not certain whether a form of luminosity evolu- 

tion can be found which produces GLE over the entire range. For these reasons we now 

a.pply a more rigorous test which does not require the assumption of the form of physical 
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evolution to determine whether the data support GLE. 

c)  The Number - Flux Test 

The number - flux test is described by Loh and Spillar (1986). The method of mo- 

ments, which is a generalization of this test, is described by Caditz and Petrosian (1988). 

In Appendix B of this work we extend the method of moments for application to combi- 

nations of various flux (or magnitude) limited samples. The number-flux test can be used 

to determine cosmological parameters from a given set of data if certain aspects of the 

evolution of the luminosity function are known (e.g., comoving density or characteristic 

luminosity). Conversely, if the cosmological parameters are assumed, or known by inde- 

pendent means, this test can be used to determine the evolution of the luminosity function 

from a given data set. Unlike the above described nonparametric test, the number - flux 

test can be used to determine the luminosity function from a given set of data indepen- 

dently of an assumed form of physical evolution y(z), and in fact, can be used to  determine 

both the luminosity evolution, g ( z ) ,  and the density evolution, p(z ) ,  of the sample for any 

assumed cosmological model. 

We have applied the number-flux test to various combinations of the QSO data given in 

Table 1 assumung a double power law form of the luminosity function as given by Marshall 

(1988) with break luminosity L,(z). Our basic results are given in Figures 3 and 4. Figure 

3 shows the variation with redshift of the number of objects contained within a comoving 

shell at redshift z ,  divided by z 2 .  This number is the product of the comoving density, 

which is determined by the luminosity function, and the comoving volume of the shell at z ,  

which depends on the cosmological model. Curves expected for constant comoving density 

are shown for various values of Q. Figure 3 indicates that constant density is not consistent 

with the data for reasonable values of Q, and either an increase in the density or variation in 

the shape of the luminosity function occurs for z < 0.6, consistent with the nonparametric 

analysis above. Figure 4 shows the variation with z of the apparent break luminosity, 
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L,(z)/d;(z). (The constant values of L,/dB are due to the coincidence mentioned earlier 

that the luminosity evolution law seems to be parallel to the sample cut-off luminosity in a 

magnitude limited sample.) The values plotted in both Figure 3 and 4 are independent of 

the cosmological model. Given a cosmological model which determines the volume, V(z), 

and the luminosity distance, d l ( z ) ,  we may determine directly from Figures 3 and 4 the 

functions p ( z )  and g(z) .  These functions are plotted in Figures 5 and 6, respectively, for 

Friedman models with various values of density parameter, 0, and A = 0. We find, as 

mentioned above, that there is a significant increase in the comoving density at z < 0.6, 

and also, a rapid evolution in characteristic luminosity, g ( z )  = exp(tr/r), which we have 

plotted as a solid line, along with the data in Figure 6 (T E .73 Gyr for s1 = 1, A = 0, 

H, = 100 km s-' Mpc-I). In agreement with our earlier results (Figures l b  and 2b), we 

find that the power law form of luminosity evolution, g ( z )  = (1 + z ) ~ ,  fails for z < 0.6 

although it fits well at higher redshifts, and that comoving density is not independent of 

redshift except perhaps for unreasonably large values of 52. 

The above analysis assumed a double power law luminosity function with constant 

slopes of 1.35 and 3.6 over the entire redshift range 0 < z < 2.2. While this form of 

luminosity function is correct at high redshifts, the nonparametric method discussed above 

indicates that it may be incorrect for redshifts, z < O X ,  and that the luminosity function 

may indeed change shape. A more sophisticated application of the number-flux test, using 

higher moments of the data, can be used to determine the evolution of the shape of the 

luminosity function and thus reduce the number of assumptions (Caditz and Petrosian, 

1988). Unfortunately, for reasons discussed in Appendix 13, the present data are insufficient 

to perform such an analysis. In any case, it is clear that either the comoving density and 

characteristic luminosity vary as shown in Figures 5 and 6, or the luminosity function 

changes shape at z - 0.6, or both. We conclude, therefore, that both PDE a.nd PLE are 

excluded in the redshift range 0 < z < 2.2, although GLE may be correct. 
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IV. Discussion and Conclusions 

We have described various forms of evolution of the QSO luminosity function and 

how these forms may be recognized in a given set of data. We stress that although certain 

forms of luminosity function evolution may suggest particular forms of physical evolution 

of individual objects, physical evolution cannot be uniquely determined. For example, in 

the most natural interpretation, PLE results from long lived objects, all born at a given 

era, and all undergoing similar evolution, yet it may be the result of short lived objects 

produced continuously by a source function with evolving parameters. 

Recent work by Wandel and Petrosian (1988) on the accretion disk model for the AGN 

central engine suggests that these objects do not undergo the type of physical evolution 

expected to produce a PLE type luminosity function. In a subsequent paper we will discuss 

in detail the physical evolution predicted under the accretion disk model and whether such 

physical evolution can reproduce GLE type statistical evolution. Because there have been 

recent claims that the QSO luminosity function does obey PLE, we have analysed data 

from various QSO surveys to determine the validity of these claims. We have found that, 

for reasonable values of cosmological parameters, PLE is not consistent with the data over 

the redshift range 0 < z < 2.2. This draws into question the claims of a continuous 

evolution from high redshift QSO’s to low redshift Seyfert galaxies. We have, in addition, 

shown PDE to be inconsistent with the data independently of arguments concerning the 

X-ray background or number counts. We have found that a form of GLE which contains 

both luminosity evolution described by g ( z )  = exp(t,/.r) and density evolution may be 

an appropriate description of the evolution of the QSO luminosity function. Luminosity 

evolution of the form g ( z )  = (1 + z ) ~  appears to be inconsistent with the data at redshifts 

z < 0.6. In addition, the shape of the luminosity function may change at z - 0.6, indicating 

a more complicated form of evolution. 

We note that no single survey combines enough low redshift data with deep, high 

redshift data to provide an unambiguous determination of the consistency of PLE. Our 
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results are necessarily derived from a combined data set. It has been suggested (Cavaliere, 

Giallongo, and Vagnetti, 1989) that unforseen errors may be introduced by combining 

data from surveys, each with different uncertainties and biases. The low redshift AB and 

BF surveys which are on average closer to their flux limits could, for example be biased 

toward high comoving densities while the AAT may be biased in the opposite manner. It 

is hard to see, however, how this bias could cause an error large enough to make an R 5 1 

universe appear as R > 3 as suggested by Figures 5 and 6 if PLE is assumed to be correct. 

The number of low (high) redshift sources would have to be reduced (increased) by an 

order of magnitude to make the data consistent with both R 5 1 and PLE. In addition, 

uncertainties occurring near the flux limit, described by Cavaliere et al., call into question 

the maximum likelihood analyses of hlarshall (1987) and Boyle et al. (1988) which suggest 

PLE. 
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Appendix A 

Noli-Parametric Method for Coiiibined Flux Limited Surveys 

I '  

The non-parametric method for a single flux limited survey is described by Lynden- 

Bell (1971) and Petrosian (1986). Here, we present a method for constructing a nonpara- 

metric luminosity function from combined samples, each with different flux limits, l l im ,  

as illustrated in Figure A.l .  Objects denoted by circles, squares, and triangles are from 

surveys which correspond to flux limits 1, 2, and 3, respectively. In a procedure analogous 

to that of Lynden-Bell, we associate with each object a minimum absolute luminosity, 

L,i,, determined by the intersection of a vertical line (constant z )  through the object 

and the curve corresponding to the appropriate flux limit, below which the object would 

not have been detected. Lmin depends on both the redshift of the source and the flux 

limit of the survey, but does not depend on the luminosity of the source itself. If the true 

distribution of sources, Q(L,z), is a separable function of L and z ,  then L and Lmin will 

also be independent variables, and the nonparametric method for single samples may be 

directly applied to the combined data on the L - Lmin plane. 

If we combine all objects on a plot of L us. Lmin they will appear as in Figure A.2 

where we now make no distinction between objects taken from different surveys. Using the 

nonparametric method for single surveys, we find for the cumulative luminosity function, 

where the objects are ordered by increasing luminosity and N; is the number of objects in 

the rectangular region indicated in Figure A.2. Iterating the above equation we find 

i - 1  

(A.2) 
j=l 

where a0 is an arbitrary constant of normalization and N j  is defined as the number of 

objects with L > Lj  and Lmin < Lj. Here, L j  is t,he luminosity of the j t h  brightest object 

of the combined sample. 
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For analysis of a single survey, or combined surveys with identical limits, the definition 

of N j  is completely equivalent to that given in the above references, namely, N j  consists of 

all objects with L > L j  and z < zmaZ(Lj) where zm,,(Lj) is the maximum redshift that an 

object of luminosity Lj  can have and still be detected. Using the proscription Lmin < Lj,  

however, in place of z < zmaZ(Lj), allows generalization of the nonparametric method to 

any number of different samples. This method can in fact be used for surveys such as the 

Palomer Bright Quasar Survey in which each object is assigned a different value of limiting 

flux. 

The determination of the cumulative density function a ( z )  = JOz p ( z ' ) ( d V / d z )  dz' 

from combined samples is identical to the above with the replacement of the distribution 

in (L,Lmin) space with that in the (V,V,,,) space. Here, however, we define N; as the 

number of objects with V < Vi and V,,, > Vi. This prescription is equivalent to 

counting N; as the set of all objects, j ,  such that Vj  < Vi and L j  > Lmin(zj, Zlim,j), which 

for standard cosmological models provides computational advantages. 
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Appendix B 

The Method of Moments for Conibiiied Samples 

The Method of Moments for a single sample is described by Caditz and Petrosian 

(1988). This method uses ratios of moments of the luminosity function to determine 

unknown cosmological parameters as well as parameters describing the shape and evolution 

of the luminosity function. All parameters of the luminosity function can be determined in 

this manner except one describing the luminosity evolution or one describing the density 

evolution of the luminosity function. These two unknown parameters are always found 

in combination with the cosmological parameters, and assumptions must be made about 

one set of parameters (e.g., cosmological) to determine the others (e.g., the density and 

luminosity evolution of the sources). For example, if we assume pure luminosity evolution, 

Q(L,z) = (l/g(z))$(L/g(Z)), then only two moments are needed, and the method of 

moments becomes identical to the number-flux test described by Loh and Spillar (1986). 

In this case the total number of objects and the total flux (divided by the limiting flux) 

within a redshift interval z to z + Sz are given by, 

00 

N = p(z)V'SRSz lo $(a:)  da: 

and 

(B.2) 

where V'SRSz is the volume element within a redshift range Sz and solid angle Sa, p ( z )  is 

the total density (we have normalized Q(L, 2) to unity), and we have defined the quantities 

and 

x, G Lo/g(z) = 4nd;E,/g(z) 
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, 

Here, I, is the limiting flux and dl is the luminosity distance which depends on cosmological 

parameters as well as redshift, and V' = dV/dz. Both N and F1 depend on cosmological 

parameters through the volume element, V'SS~SZ, yet the quantity 

depends only on the parameter xo and can be compared directly with the corresponding 

ratio of the observed data, 

to determine this unknown parameter. With x, known, Equations B.l  and B.4 can be 

solved for the quantities 

and 

One furt,,er assumption must be made about the density evc- Jtion, the luminosity evo- 

lution, or the cosmological parameters. For example, if we assume constant density, 

p ( z )  = constant, then Equation B.6 can be solved for the cosmological parameters (con- 

tained in V'(z)) and then Equation B.7 determines g(z ) .  The assumption of cosmological 

parameters gives p ( z )  and g(z) directly, and the assumption of g(z) in equation (B.7) gives 

the cosmological parameters in d l ( z ) ,  and p(z )  from equation (B.6). Note that if the lu- 

minosity function obeys a simple power law, then C1 will be independent of x,, and the 

method of moments fails. However, for finite total flux and source counts, the power law 

must be broken at some luminosity, L*(z). Equations B.5 and B.6 can then be used to 

find the variation of L, with redshift which determines the luminosity evolution. 

Clearly, higher moments can be used to determine unknown parameters of the lumi- 

nosity function. We define the nt" flux moment as, 



and the corresponding ratio as 

(B.9) 
F n  C n ( L 0 )  = -. N 

The variance of the nth moment is given by, o n  = i ( C 2 n  - C i )  (Kendall, 1963, p. 229), 

which increases with higher moments. h4ore sophisticated applications of the method 

of moments, using higher moments to determine unknown parameters of the luminosity 

function are practical only for larger samples. 

Different surveys, or different plates from the same survey, may have different sky 

coverage, SR, and different limiting flux, E , .  We wish to combine these samples in a 

manner which preserves the separation of cosmological parameters and luminosity function 

parameters described above. We arbitrarily choose one survey (Silo, l o )  as a standard from 

the m + 1 surveys we wish to combine. For each survey, i = 0 to m, we define the quantities, 

and 

The individual flux moments are now defined by, 

Fn,i  = /I(z)V’SR~SZ- 

The total number of objects in the combined sample is given by 
m m 

i=O i=O 

and we have the quantities Cn,i given by, 

(B. l l )  

(B.12) 

(B.13) 

(B.14) 

The important question in how to combine the samples for the purpose of achieving highest 

statistical significance. In general, we can assign different statistical weights to the samples 

and define an average value for the Cn,i ’S as 
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m 

(B.15) 

where w; are statistical weights to be discussed below. As in the case of a single survey, 

the generalized C ,  depend only on the parameters of the luminosity function and on Lo, 

and when compared with the appropriate observed ratios of moments, can be solved for 

these parameters. 

The weights, w;, defined in Equation B.15 are completely arbitrary and we may choose 

them in the manner which best suits our purposes. For example, for w; = 1 we have, 

m 

c, = - (B.16) 

C ,  is thus the average value of that parameter obtained from the individual surveys. This 

choice of weights may not be optimal for combining surveys with widely different sky 

coverages and limiting fluxes because the average may be dominated by one survey, e.g., 

a small, deep survey, and not include fully the contribution of objects from surveys with 

larger sky coverage which will have average luminosities close to the brighter sample limits. 

For this reason we choose the weights, wj = Nj and obtain, 

(B.17) 

This choice of wi gives adequate weight to both small, deep surveys with small 6fij as well 

as bright surveys with large SO;. We stress that the cosmological parameters as well as 

the parameters of the luminosity function are, in principle, independent of the choice of 

weights, and for large enough samples, different choices of weights should give the same 

results. 
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Table 1 QSO Surveys 

Sample N cZ0(deg2)  B l i n z  Reference 

AB 

BF 

AAT 

22 

35 

167 

MBQS 32 87.65 

21.30 

37.20 

1.72 

0.35 

0.70 

3.15 

Marano 23 0.69 

Koo & Kron 29 0.29 

17.65 4p. J.287,  1984 

17.25 

18.25 

19.80 Ap.  J .  269, 1982 

30.40 M.N.R.A.S. 227, 1987 

20.65 

20.90 

21.00 M.N.R.A.S. 232, 1988 

22.60 Ap. J. 325, 1988 

-4str. Ap.  Suppl. 80, 1980 
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Figure la. - Nonparametric cumulative luminosity functions, @( > L), from the data listed 
in Table 1 for redshift ranges 0 < z < 0.3, 0.3 < z < 0.6, 0.6 < z < 1.0, 1.0 < z < 1.4, 
1.4 < z < 1.8, 1.8 < z < 2.2, from top to bottom, respectively (R = 1, H, = 100 km 
s-l Mpc-', A = 0). (Normalization is arbitrary and curves have been shifted vertically 
for clarity.) The luminosity evolution, g( z ) ,  has been assumed constant corresponding to 
pure density evolution. The luminosity function clearly evolves with redshift from a single 
power law at low z to a double power law at high z ,  a.nd the break luminosity also increases 
with z .  This shows that PDE is not a consistent description of the data. 

Figure lb.  - Same as Figure la ,  but assuming a luminosity evolution of the form g ( z )  = 

(1 + z ) ~ . ~ .  The shape of the luminosity function remains constant for z > 0.6, but changes 
at lower redshifts inconsistent with GLE. The variation of the luminosity function could 

b be the result of either a true change of shape, or an incorrect choice of g ( z )  or cosmological 
model. 
toward higher luminosities, and the shape may then remain invariant. 

A more strongly evolving g ( z )  may shift the low redshift luminosity functions 

Figure IC. - Same as Figure la ,  but assuming a luminosity evolution of the form g ( z )  = 

exp(t/.r) with t being the lookback time and T = .73 Gyr. Here the break has evolved below 
the observable region at low redshifts, indicating perhaps that the exponential luminosity 
evolution gives a better description of the data, but the slope of the luminosity function 
appears to flatten at low 2, inconsistent with PLE or GLE. 

Figure 2. - Nonparametric cumulative density functions for the data given in Table 1 
(R = 1, H, = 100 km s-l Mpc-', A = 0, normalization is arbitrary). Dotted lines 
indicated expected behavior for constant density (a(V) 0: V) expected for PLE. Curve 
a - assuming g ( z )  = const. a dramatic increase in the density of objects with redshift is 
observed. This is mainly the result of an increase in the average luminosity with redshift 
(see Figure la) .  Curve b - g(z) = (1 + z ) ~ . ~  gives a small increase in the density of objects 
with redshift. This could be the result of a true increase in density with z ,  or an incorrect 
g ( z )  or cosmological model. Curve c - g ( z )  = exp(t/T) shows a decrease in density at 
2 - 0.6 (V- 1010Mpc3). Evolution in p(2 )  indicates that PLE is inconsistent with the 

data for all three curves. 

Figure 3. - Results of the method of moments (see text): Product of comoving density and 
comoving volume within a shell at redshift z ,  divided by z 2  (arbitrary normalization). Error 
bars indicate 95% confidence regions. Calculated values are independent of cosmological 
model and any assumptions about y(z), but it is assumed that the shape of the luminosity 

28 



function does not vary with redshift. Solid lines indicate expected behavior assuming 
constant comoving density for the indicated values of R and A = 0. Dotted line is the 
52 = 1 curve normalized to fit the high redshift data. An increase in density at z - 0.6 
is indicated, although it may be the result of a change in the shape of the luminosity 
function. PLE, which requires constant density and luminosity function shape, is shown 
to be inconsistent with the data for reasonable values of a. 

Figure 4. - Results of method of moments: The ratio of the break luminosity, L*(z), to the 
square of the luminosity distance, dl( z )  (arbitrary normalization). Error bars indicate 95% 
confidence regions. Values are independent of cosmological model and assumptions about 
g ( z ) ,  but require constant shape of the luminosity function. The constancy of this ratio 
with redshift is the result of the apparent coincidence that the break luminosity evolves 
essentially parallel to the flux limit of the surveys over the observed redshift range. 

Figure 5 .  - Comoving density as a function of redshift from the data given in Figure 3 
assuming various values of 0. The comoving density, p ( z ) ,  may be considered constant, 
and the evolution consistent with PLE for 0 N 3, but for reasonable values of R, the 
comoving density or the shape of the luminosity function must evolve. 

Figure 6. - Evolution of the break luminosity, L,(z), from the data given in Figure 4, 
assuming the indicated values of 0. Solid lines indicate expected behavior for g ( z )  = 

(1 + 2)3.2 (upper curve) and g ( z )  = exp(t/.73) (lower curve). While the evolution of L, 
can be described by either law for z > 0.6, only the exponential law fits the data over the 
entire redshift range. It may be hard to fit either law to the data when high values of 
Q - 3 are assumed. 
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